![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfinfmr | Unicode version |
Description: The infimum (expressed as supremum with converse 'less-than') of a set of reals . (Contributed by NM, 9-Oct-2005.) |
Ref | Expression |
---|---|
dfinfmr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 7921 | . 2 | |
2 | ssel2 3498 | . . . . . . . . 9 | |
3 | lenlt 9684 | . . . . . . . . . 10 | |
4 | vex 3112 | . . . . . . . . . . . 12 | |
5 | vex 3112 | . . . . . . . . . . . 12 | |
6 | 4, 5 | brcnv 5190 | . . . . . . . . . . 11 |
7 | 6 | notbii 296 | . . . . . . . . . 10 |
8 | 3, 7 | syl6rbbr 264 | . . . . . . . . 9 |
9 | 2, 8 | sylan2 474 | . . . . . . . 8 |
10 | 9 | ancoms 453 | . . . . . . 7 |
11 | 10 | an32s 804 | . . . . . 6 |
12 | 11 | ralbidva 2893 | . . . . 5 |
13 | 5, 4 | brcnv 5190 | . . . . . . . 8 |
14 | vex 3112 | . . . . . . . . . 10 | |
15 | 5, 14 | brcnv 5190 | . . . . . . . . 9 |
16 | 15 | rexbii 2959 | . . . . . . . 8 |
17 | 13, 16 | imbi12i 326 | . . . . . . 7 |
18 | 17 | ralbii 2888 | . . . . . 6 |
19 | 18 | a1i 11 | . . . . 5 |
20 | 12, 19 | anbi12d 710 | . . . 4 |
21 | 20 | rabbidva 3100 | . . 3 |
22 | 21 | unieqd 4259 | . 2 |
23 | 1, 22 | syl5eq 2510 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
{ crab 2811 C_ wss 3475 U. cuni 4249
class class class wbr 4452 `' ccnv 5003
sup csup 7920
cr 9512 clt 9649 cle 9650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-cnv 5012 df-sup 7921 df-xr 9653 df-le 9655 |
Copyright terms: Public domain | W3C validator |