![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfiun2 | Unicode version |
Description: Alternate definition of indexed union when is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
dfiun2.1 |
Ref | Expression |
---|---|
dfiun2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 4362 | . 2 | |
2 | dfiun2.1 | . . 3 | |
3 | 2 | a1i 11 | . 2 |
4 | 1, 3 | mprg 2820 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
{ cab 2442 E. wrex 2808 cvv 3109
U. cuni 4249 U_ ciun 4330 |
This theorem is referenced by: fniunfv 6159 funcnvuni 6753 fun11iun 6760 tfrlem8 7072 rdglim2a 7118 rankuni 8302 cardiun 8384 kmlem11 8561 cfslb2n 8669 enfin2i 8722 pwcfsdom 8979 rankcf 9176 tskuni 9182 discmp 19898 cmpsublem 19899 cmpsub 19900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-uni 4250 df-iun 4332 |
Copyright terms: Public domain | W3C validator |