![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfiun2g | Unicode version |
Description: Alternate definition of indexed union when is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2838 | . . . . . 6 | |
2 | rsp 2823 | . . . . . . . 8 | |
3 | clel3g 3237 | . . . . . . . 8 | |
4 | 2, 3 | syl6 33 | . . . . . . 7 |
5 | 4 | imp 429 | . . . . . 6 |
6 | 1, 5 | rexbida 2963 | . . . . 5 |
7 | rexcom4 3129 | . . . . 5 | |
8 | 6, 7 | syl6bb 261 | . . . 4 |
9 | r19.41v 3009 | . . . . . 6 | |
10 | 9 | exbii 1667 | . . . . 5 |
11 | exancom 1671 | . . . . 5 | |
12 | 10, 11 | bitri 249 | . . . 4 |
13 | 8, 12 | syl6bb 261 | . . 3 |
14 | eliun 4335 | . . 3 | |
15 | eluniab 4260 | . . 3 | |
16 | 13, 14, 15 | 3bitr4g 288 | . 2 |
17 | 16 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 { cab 2442 A. wral 2807
E. wrex 2808 U. cuni 4249 U_ ciun 4330 |
This theorem is referenced by: dfiun2 4364 dfiun3g 5260 iunexg 6776 uniqs 7390 ac6num 8880 iunopn 19407 pnrmopn 19844 cncmp 19892 ptcmplem3 20554 iunmbl 21963 voliun 21964 sigaclcuni 28118 sigaclcu2 28120 sigaclci 28132 measvunilem 28183 meascnbl 28190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-uni 4250 df-iun 4332 |
Copyright terms: Public domain | W3C validator |