![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfixp | Unicode version |
Description: Eliminate the expression in df-ixp 7490, under the assumption that and are disjoint. This way, we can say that is bound in even if it appears free in . (Contributed by Mario Carneiro, 12-Aug-2016.) |
Ref | Expression |
---|---|
dfixp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 7490 | . 2 | |
2 | abid2 2597 | . . . . 5 | |
3 | 2 | fneq2i 5681 | . . . 4 |
4 | 3 | anbi1i 695 | . . 3 |
5 | 4 | abbii 2591 | . 2 |
6 | 1, 5 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 { cab 2442 A. wral 2807
Fn wfn 5588 ` cfv 5593 X_ cixp 7489 |
This theorem is referenced by: ixpsnval 7492 elixp2 7493 ixpeq1 7500 cbvixp 7506 ixp0x 7517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-fn 5596 df-ixp 7490 |
Copyright terms: Public domain | W3C validator |