![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfmpt2 | Unicode version |
Description: Alternate definition for the "maps to" notation df-mpt2 6301 (although it requires that be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpt2.1 |
Ref | Expression |
---|---|
dfmpt2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2mpts 6864 | . 2 | |
2 | dfmpt2.1 | . . . . 5 | |
3 | 2 | csbex 4585 | . . . 4 |
4 | 3 | csbex 4585 | . . 3 |
5 | 4 | dfmpt 6076 | . 2 |
6 | nfcv 2619 | . . . . 5 | |
7 | nfcsb1v 3450 | . . . . 5 | |
8 | 6, 7 | nfop 4233 | . . . 4 |
9 | 8 | nfsn 4087 | . . 3 |
10 | nfcv 2619 | . . . . 5 | |
11 | nfcv 2619 | . . . . . 6 | |
12 | nfcsb1v 3450 | . . . . . 6 | |
13 | 11, 12 | nfcsb 3452 | . . . . 5 |
14 | 10, 13 | nfop 4233 | . . . 4 |
15 | 14 | nfsn 4087 | . . 3 |
16 | nfcv 2619 | . . 3 | |
17 | id 22 | . . . . 5 | |
18 | csbopeq1a 6853 | . . . . 5 | |
19 | 17, 18 | opeq12d 4225 | . . . 4 |
20 | 19 | sneqd 4041 | . . 3 |
21 | 9, 15, 16, 20 | iunxpf 5156 | . 2 |
22 | 1, 5, 21 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
cvv 3109
[_ csb 3434 { csn 4029 <. cop 4035
U_ ciun 4330 e. cmpt 4510 X. cxp 5002
` cfv 5593 e. cmpt2 6298 c1st 6798
c2nd 6799 |
This theorem is referenced by: fpar 6904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |