![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfnfc2 | Unicode version |
Description: An alternative statement of the effective freeness of a class , when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
dfnfc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2620 | . . . 4 | |
2 | id 22 | . . . 4 | |
3 | 1, 2 | nfeqd 2626 | . . 3 |
4 | 3 | alrimiv 1719 | . 2 |
5 | simpr 461 | . . . . . 6 | |
6 | df-nfc 2607 | . . . . . . 7 | |
7 | elsn 4043 | . . . . . . . . 9 | |
8 | 7 | nfbii 1644 | . . . . . . . 8 |
9 | 8 | albii 1640 | . . . . . . 7 |
10 | 6, 9 | bitri 249 | . . . . . 6 |
11 | 5, 10 | sylibr 212 | . . . . 5 |
12 | 11 | nfunid 4256 | . . . 4 |
13 | nfa1 1897 | . . . . . 6 | |
14 | nfnf1 1899 | . . . . . . 7 | |
15 | 14 | nfal 1947 | . . . . . 6 |
16 | 13, 15 | nfan 1928 | . . . . 5 |
17 | unisng 4265 | . . . . . . 7 | |
18 | 17 | sps 1865 | . . . . . 6 |
19 | 18 | adantr 465 | . . . . 5 |
20 | 16, 19 | nfceqdf 2614 | . . . 4 |
21 | 12, 20 | mpbid 210 | . . 3 |
22 | 21 | ex 434 | . 2 |
23 | 4, 22 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
F/ wnf 1616 e. wcel 1818 F/_ wnfc 2605
{ csn 4029 U. cuni 4249 |
This theorem is referenced by: eusv2nf 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-un 3480 df-sn 4030 df-pr 4032 df-uni 4250 |
Copyright terms: Public domain | W3C validator |