![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfnn2 | Unicode version |
Description: Alternate definition of the set of positive integers. This was our original definition, before the current df-nn 10562 replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
Ref | Expression |
---|---|
dfnn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 9612 | . . . . 5 | |
2 | 1 | elintab 4297 | . . . 4 |
3 | simpl 457 | . . . 4 | |
4 | 2, 3 | mpgbir 1622 | . . 3 |
5 | oveq1 6303 | . . . . . . . . . 10 | |
6 | 5 | eleq1d 2526 | . . . . . . . . 9 |
7 | 6 | rspccv 3207 | . . . . . . . 8 |
8 | 7 | adantl 466 | . . . . . . 7 |
9 | 8 | a2i 13 | . . . . . 6 |
10 | 9 | alimi 1633 | . . . . 5 |
11 | vex 3112 | . . . . . 6 | |
12 | 11 | elintab 4297 | . . . . 5 |
13 | ovex 6324 | . . . . . 6 | |
14 | 13 | elintab 4297 | . . . . 5 |
15 | 10, 12, 14 | 3imtr4i 266 | . . . 4 |
16 | 15 | rgen 2817 | . . 3 |
17 | peano5nni 10564 | . . 3 | |
18 | 4, 16, 17 | mp2an 672 | . 2 |
19 | 1nn 10572 | . . . 4 | |
20 | peano2nn 10573 | . . . . 5 | |
21 | 20 | rgen 2817 | . . . 4 |
22 | nnex 10567 | . . . . 5 | |
23 | eleq2 2530 | . . . . . 6 | |
24 | eleq2 2530 | . . . . . . 7 | |
25 | 24 | raleqbi1dv 3062 | . . . . . 6 |
26 | 23, 25 | anbi12d 710 | . . . . 5 |
27 | 22, 26 | elab 3246 | . . . 4 |
28 | 19, 21, 27 | mpbir2an 920 | . . 3 |
29 | intss1 4301 | . . 3 | |
30 | 28, 29 | ax-mp 5 | . 2 |
31 | 18, 30 | eqssi 3519 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 e. wcel 1818
{ cab 2442 A. wral 2807 C_ wss 3475
|^| cint 4286
(class class class)co 6296 1 c1 9514
caddc 9516 cn 10561 |
This theorem is referenced by: dfnn3 10575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-i2m1 9581 ax-1ne0 9582 ax-rrecex 9585 ax-cnre 9586 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-om 6701 df-recs 7061 df-rdg 7095 df-nn 10562 |
Copyright terms: Public domain | W3C validator |