![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfop | Unicode version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
dfop.1 | |
dfop.2 |
Ref | Expression |
---|---|
dfop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 | |
2 | dfop.2 | . 2 | |
3 | dfopg 4215 | . 2 | |
4 | 1, 2, 3 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
cvv 3109
{ csn 4029 { cpr 4031 <. cop 4035 |
This theorem is referenced by: opid 4236 elop 4718 opi1 4719 opi2 4720 op1stb 4722 opeqsn 4748 opeqpr 4749 uniop 4755 xpsspw 5121 xpsspwOLD 5122 relop 5158 funopg 5625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-op 4036 |
Copyright terms: Public domain | W3C validator |