![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfopif | Unicode version |
Description: Rewrite df-op 4036 using if .
When both arguments are sets, it reduces
to the standard Kuratowski definition; otherwise, it is defined to be
the empty set. Avoid directly depending on this detail so that theorems
will not depend on the Kuratowski construction. (Contributed by Mario
Carneiro, 26-Apr-2015.) (Avoid depending on this
detail.) |
Ref | Expression |
---|---|
dfopif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 4036 | . 2 | |
2 | df-3an 975 | . . 3 | |
3 | 2 | abbii 2591 | . 2 |
4 | iftrue 3947 | . . . 4 | |
5 | ibar 504 | . . . . 5 | |
6 | 5 | abbi2dv 2594 | . . . 4 |
7 | 4, 6 | eqtr2d 2499 | . . 3 |
8 | pm2.21 108 | . . . . . . 7 | |
9 | 8 | adantrd 468 | . . . . . 6 |
10 | 9 | abssdv 3573 | . . . . 5 |
11 | ss0 3816 | . . . . 5 | |
12 | 10, 11 | syl 16 | . . . 4 |
13 | iffalse 3950 | . . . 4 | |
14 | 12, 13 | eqtr4d 2501 | . . 3 |
15 | 7, 14 | pm2.61i 164 | . 2 |
16 | 1, 3, 15 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
{ cab 2442 cvv 3109
C_ wss 3475 c0 3784 if cif 3941 { csn 4029
{ cpr 4031 <. cop 4035 |
This theorem is referenced by: dfopg 4215 opeq1 4217 opeq2 4218 nfop 4233 opprc 4239 opex 4716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-op 4036 |
Copyright terms: Public domain | W3C validator |