![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfoprab4f | Unicode version |
Description: Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfoprab4f.x | |
dfoprab4f.y | |
dfoprab4f.1 |
Ref | Expression |
---|---|
dfoprab4f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . . . 5 | |
2 | dfoprab4f.x | . . . . . 6 | |
3 | nfs1v 2181 | . . . . . 6 | |
4 | 2, 3 | nfbi 1934 | . . . . 5 |
5 | 1, 4 | nfim 1920 | . . . 4 |
6 | opeq1 4217 | . . . . . 6 | |
7 | 6 | eqeq2d 2471 | . . . . 5 |
8 | sbequ12 1992 | . . . . . 6 | |
9 | 8 | bibi2d 318 | . . . . 5 |
10 | 7, 9 | imbi12d 320 | . . . 4 |
11 | nfv 1707 | . . . . . 6 | |
12 | dfoprab4f.y | . . . . . . 7 | |
13 | nfs1v 2181 | . . . . . . 7 | |
14 | 12, 13 | nfbi 1934 | . . . . . 6 |
15 | 11, 14 | nfim 1920 | . . . . 5 |
16 | opeq2 4218 | . . . . . . 7 | |
17 | 16 | eqeq2d 2471 | . . . . . 6 |
18 | sbequ12 1992 | . . . . . . 7 | |
19 | 18 | bibi2d 318 | . . . . . 6 |
20 | 17, 19 | imbi12d 320 | . . . . 5 |
21 | dfoprab4f.1 | . . . . 5 | |
22 | 15, 20, 21 | chvar 2013 | . . . 4 |
23 | 5, 10, 22 | chvar 2013 | . . 3 |
24 | 23 | dfoprab4 6857 | . 2 |
25 | nfv 1707 | . . 3 | |
26 | nfv 1707 | . . 3 | |
27 | nfv 1707 | . . . 4 | |
28 | 27, 3 | nfan 1928 | . . 3 |
29 | nfv 1707 | . . . 4 | |
30 | 13 | nfsb 2184 | . . . 4 |
31 | 29, 30 | nfan 1928 | . . 3 |
32 | eleq1 2529 | . . . . 5 | |
33 | eleq1 2529 | . . . . 5 | |
34 | 32, 33 | bi2anan9 873 | . . . 4 |
35 | 18, 8 | sylan9bbr 700 | . . . 4 |
36 | 34, 35 | anbi12d 710 | . . 3 |
37 | 25, 26, 28, 31, 36 | cbvoprab12 6371 | . 2 |
38 | 24, 37 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 F/ wnf 1616
[ wsb 1739 e. wcel 1818 <. cop 4035
{ copab 4509 X. cxp 5002
{ coprab 6297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 df-oprab 6300 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |