MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfral2 Unicode version

Theorem dfral2 2904
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 2905. (Revised by Wolf Lammen, 9-Dec-2019.)
Assertion
Ref Expression
dfral2

Proof of Theorem dfral2
StepHypRef Expression
1 notnot 291 . . 3
21ralbii 2888 . 2
3 ralnex 2903 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  A.wral 2807  E.wrex 2808
This theorem is referenced by:  rexnal  2905  boxcutc  7532  infssuni  7831  ac6n  8886  indstr  11179  trfil3  20389  tglowdim2ln  24032  nmobndseqi  25694  stri  27176  hstri  27184  bnj1204  34068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-ral 2812  df-rex 2813
  Copyright terms: Public domain W3C validator