![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfral2 | Unicode version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 2905. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
dfral2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 291 | . . 3 | |
2 | 1 | ralbii 2888 | . 2 |
3 | ralnex 2903 | . 2 | |
4 | 2, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
A. wral 2807 E. wrex 2808 |
This theorem is referenced by: rexnal 2905 boxcutc 7532 infssuni 7831 ac6n 8886 indstr 11179 trfil3 20389 tglowdim2ln 24032 nmobndseqi 25694 stri 27176 hstri 27184 bnj1204 34068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |