![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfrex2 | Unicode version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
Ref | Expression |
---|---|
dfrex2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 2903 | . 2 | |
2 | 1 | con2bii 332 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
A. wral 2807 E. wrex 2808 |
This theorem is referenced by: rexanali 2910 nfrexd 2919 nfrexOLD 2921 rexim 2922 r19.23v 2937 r19.30 3002 r19.35 3004 cbvrexf 3079 rspcimedv 3212 sbcrextOLD 3409 sbcrext 3410 cbvrexcsf 3467 r19.9rzv 3923 rexxfrd 4667 rexxfr2d 4669 rexxfr 4672 rexiunxp 5148 rexxpf 5155 rexrnmpt 6041 cbvexfo 6193 rexrnmpt2 6418 tz7.49 7129 dfsup2 7922 supnub 7942 wofib 7991 zfregs2 8185 alephval3 8512 ac6n 8886 prmreclem5 14438 sylow1lem3 16620 ordtrest2lem 19704 trfil2 20388 alexsubALTlem3 20549 alexsubALTlem4 20550 evth 21459 lhop1lem 22414 nmobndseqi 25694 chpssati 27282 chrelat3 27290 nn0min 27611 xrnarchi 27728 ordtrest2NEWlem 27904 dffr5 29182 fdc 30238 unxpwdom3 31041 rexxfrd2 32304 zfregs2VD 33641 lpssat 34738 lssat 34741 lfl1 34795 atlrelat1 35046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |