MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsb3 Unicode version

Theorem dfsb3 2115
Description: An alternate definition of proper substitution df-sb 1740 that uses only primitive connectives (no defined terms) on the right-hand side. (Contributed by NM, 6-Mar-2007.)
Assertion
Ref Expression
dfsb3

Proof of Theorem dfsb3
StepHypRef Expression
1 df-or 370 . 2
2 dfsb2 2114 . 2
3 imnan 422 . . 3
43imbi1i 325 . 2
51, 2, 43bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369  A.wal 1393  [wsb 1739
This theorem is referenced by:  sbn  2132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator