![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfss4 | Unicode version |
Description: Subclass defined in terms of class difference. See comments under dfun2 3732. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
dfss4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 3716 | . 2 | |
2 | eldif 3485 | . . . . . . 7 | |
3 | 2 | notbii 296 | . . . . . 6 |
4 | 3 | anbi2i 694 | . . . . 5 |
5 | elin 3686 | . . . . . 6 | |
6 | abai 795 | . . . . . 6 | |
7 | iman 424 | . . . . . . 7 | |
8 | 7 | anbi2i 694 | . . . . . 6 |
9 | 5, 6, 8 | 3bitri 271 | . . . . 5 |
10 | 4, 9 | bitr4i 252 | . . . 4 |
11 | 10 | difeqri 3623 | . . 3 |
12 | 11 | eqeq1i 2464 | . 2 |
13 | 1, 12 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 \ cdif 3472 i^i cin 3474
C_ wss 3475 |
This theorem is referenced by: dfin4 3737 sorpsscmpl 6591 sbthlem3 7649 fin23lem7 8717 fin23lem11 8718 compsscnvlem 8771 compssiso 8775 isf34lem4 8778 efgmnvl 16732 frlmlbs 18831 isopn2 19533 iincld 19540 iuncld 19546 clsval2 19551 ntrval2 19552 ntrdif 19553 clsdif 19554 cmclsopn 19563 cmntrcld 19564 opncldf1 19585 indiscld 19592 mretopd 19593 restcld 19673 pnrmopn 19844 conndisj 19917 hausllycmp 19995 kqcldsat 20234 filufint 20421 cfinufil 20429 ufilen 20431 alexsublem 20544 bcth3 21770 inmbl 21952 iccmbl 21976 mbfimaicc 22040 i1fd 22088 itgss3 22221 frgrawopreg2 25051 iundifdifd 27429 iundifdif 27430 cldssbrsiga 28158 kur14lem4 28653 mblfinlem3 30053 mblfinlem4 30054 ismblfin 30055 itg2addnclem 30066 cldbnd 30144 clsun 30146 fdc 30238 lincext2 33056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |