![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfss5 | Unicode version |
Description: Another definition of subclasshood. Similar to df-ss 3489, dfss 3490, and dfss1 3702. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
dfss5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss1 3702 | . 2 | |
2 | eqcom 2466 | . 2 | |
3 | 1, 2 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
i^i cin 3474 C_ wss 3475 |
This theorem is referenced by: ordtri2or3 4980 diarnN 36856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |