![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfsup3OLD | Unicode version |
Description: Quantifier-free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfsup3OLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsup2OLD 7923 | . 2 | |
2 | indifcom 3742 | . . . . . . . . 9 | |
3 | incom 3690 | . . . . . . . . 9 | |
4 | difxp1 5437 | . . . . . . . . . 10 | |
5 | 4 | ineq2i 3696 | . . . . . . . . 9 |
6 | 2, 3, 5 | 3eqtr4i 2496 | . . . . . . . 8 |
7 | df-res 5016 | . . . . . . . 8 | |
8 | df-res 5016 | . . . . . . . 8 | |
9 | 6, 7, 8 | 3eqtr4i 2496 | . . . . . . 7 |
10 | 9 | rneqi 5234 | . . . . . 6 |
11 | df-ima 5017 | . . . . . 6 | |
12 | df-ima 5017 | . . . . . 6 | |
13 | 10, 11, 12 | 3eqtr4i 2496 | . . . . 5 |
14 | 13 | uneq2i 3654 | . . . 4 |
15 | 14 | difeq2i 3618 | . . 3 |
16 | 15 | unieqi 4258 | . 2 |
17 | 1, 16 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
U. cuni 4249 X. cxp 5002 `' ccnv 5003
ran crn 5005 |` cres 5006 " cima 5007
sup csup 7920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-sup 7921 |
Copyright terms: Public domain | W3C validator |