![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dftpos3 | Unicode version |
Description: Alternate definition of
tpos when has relational domain.
Compare df-cnv 5012. (Contributed by Mario Carneiro,
10-Sep-2015.) |
Ref | Expression |
---|---|
dftpos3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5379 | . . . . . . . . . 10 | |
2 | dmtpos 6986 | . . . . . . . . . . 11 | |
3 | 2 | releqd 5092 | . . . . . . . . . 10 |
4 | 1, 3 | mpbiri 233 | . . . . . . . . 9 |
5 | reltpos 6979 | . . . . . . . . 9 | |
6 | 4, 5 | jctil 537 | . . . . . . . 8 |
7 | relrelss 5536 | . . . . . . . 8 | |
8 | 6, 7 | sylib 196 | . . . . . . 7 |
9 | 8 | sseld 3502 | . . . . . 6 |
10 | elvvv 5064 | . . . . . 6 | |
11 | 9, 10 | syl6ib 226 | . . . . 5 |
12 | 11 | pm4.71rd 635 | . . . 4 |
13 | 19.41vvv 1773 | . . . . 5 | |
14 | eleq1 2529 | . . . . . . . 8 | |
15 | df-br 4453 | . . . . . . . . 9 | |
16 | vex 3112 | . . . . . . . . . 10 | |
17 | brtpos 6983 | . . . . . . . . . 10 | |
18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 |
19 | 15, 18 | bitr3i 251 | . . . . . . . 8 |
20 | 14, 19 | syl6bb 261 | . . . . . . 7 |
21 | 20 | pm5.32i 637 | . . . . . 6 |
22 | 21 | 3exbii 1669 | . . . . 5 |
23 | 13, 22 | bitr3i 251 | . . . 4 |
24 | 12, 23 | syl6bb 261 | . . 3 |
25 | 24 | abbi2dv 2594 | . 2 |
26 | df-oprab 6300 | . 2 | |
27 | 25, 26 | syl6eqr 2516 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 { cab 2442 cvv 3109
C_ wss 3475 <. cop 4035 class class class wbr 4452
X. cxp 5002 `' ccnv 5003 dom cdm 5004
Rel wrel 5009
{ coprab 6297 tpos ctpos 6973 |
This theorem is referenced by: tposoprab 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 df-oprab 6300 df-tpos 6974 |
Copyright terms: Public domain | W3C validator |