MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr4 Unicode version

Theorem dftr4 4550
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 4546 . 2
2 sspwuni 4416 . 2
31, 2bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  C_wss 3475  ~Pcpw 4012  U.cuni 4249  Trwtr 4545
This theorem is referenced by:  tr0  4556  pwtr  4705  r1ordg  8217  r1sssuc  8222  r1val1  8225  ackbij2lem3  8642  tsktrss  9160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-in 3482  df-ss 3489  df-pw 4014  df-uni 4250  df-tr 4546
  Copyright terms: Public domain W3C validator