![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfun2 | Unicode version |
Description: An alternate definition
of the union of two classes in terms of class
difference, requiring no dummy variables. Along with dfin2 3733 and
dfss4 3731 it shows we can express union, intersection,
and subset directly
in terms of the single "primitive" operation \ (class difference).
(Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfun2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . . . 7 | |
2 | eldif 3485 | . . . . . . 7 | |
3 | 1, 2 | mpbiran 918 | . . . . . 6 |
4 | 3 | anbi1i 695 | . . . . 5 |
5 | eldif 3485 | . . . . 5 | |
6 | ioran 490 | . . . . 5 | |
7 | 4, 5, 6 | 3bitr4i 277 | . . . 4 |
8 | 7 | con2bii 332 | . . 3 |
9 | eldif 3485 | . . . 4 | |
10 | 1, 9 | mpbiran 918 | . . 3 |
11 | 8, 10 | bitr4i 252 | . 2 |
12 | 11 | uneqri 3645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
\ cdif 3472 u. cun 3473 |
This theorem is referenced by: dfun3 3735 dfin3 3736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-un 3480 |
Copyright terms: Public domain | W3C validator |