MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun3 Unicode version

Theorem dfun3 3735
Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
dfun3

Proof of Theorem dfun3
StepHypRef Expression
1 dfun2 3732 . 2
2 dfin2 3733 . . . 4
3 ddif 3635 . . . . 5
43difeq2i 3618 . . . 4
52, 4eqtr2i 2487 . . 3
65difeq2i 3618 . 2
71, 6eqtri 2486 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395   cvv 3109  \cdif 3472  u.cun 3473  i^icin 3474
This theorem is referenced by:  difundi  3749  unvdif  3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482
  Copyright terms: Public domain W3C validator