![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > difdifdir | Unicode version |
Description: Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.) |
Ref | Expression |
---|---|
difdifdir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif32 3760 | . . . . 5 | |
2 | invdif 3738 | . . . . 5 | |
3 | 1, 2 | eqtr4i 2489 | . . . 4 |
4 | un0 3810 | . . . 4 | |
5 | 3, 4 | eqtr4i 2489 | . . 3 |
6 | indi 3743 | . . . 4 | |
7 | disjdif 3900 | . . . . . 6 | |
8 | incom 3690 | . . . . . 6 | |
9 | 7, 8 | eqtr3i 2488 | . . . . 5 |
10 | 9 | uneq2i 3654 | . . . 4 |
11 | 6, 10 | eqtr4i 2489 | . . 3 |
12 | 5, 11 | eqtr4i 2489 | . 2 |
13 | ddif 3635 | . . . . 5 | |
14 | 13 | uneq2i 3654 | . . . 4 |
15 | indm 3756 | . . . . 5 | |
16 | invdif 3738 | . . . . . 6 | |
17 | 16 | difeq2i 3618 | . . . . 5 |
18 | 15, 17 | eqtr3i 2488 | . . . 4 |
19 | 14, 18 | eqtr3i 2488 | . . 3 |
20 | 19 | ineq2i 3696 | . 2 |
21 | invdif 3738 | . 2 | |
22 | 12, 20, 21 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
c0 3784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |