MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difidALT Unicode version

Theorem difidALT 3897
Description: Alternate proof of difid 3896. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT

Proof of Theorem difidALT
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3484 . 2
2 dfnul3 3787 . 2
31, 2eqtr4i 2489 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  =wceq 1395  e.wcel 1818  {crab 2811  \cdif 3472   c0 3784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-nul 3785
  Copyright terms: Public domain W3C validator