Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difindir Unicode version

Theorem difindir 3752
 Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindir

Proof of Theorem difindir
StepHypRef Expression
1 inindir 3715 . 2
2 invdif 3738 . 2
3 invdif 3738 . . 3
4 invdif 3738 . . 3
53, 4ineq12i 3697 . 2
61, 2, 53eqtr3i 2494 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395   cvv 3109  \cdif 3472  i^icin 3474 This theorem is referenced by:  ablfac1eulem  17123  bwthOLD  19911  ballotlemgun  28463 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-in 3482
 Copyright terms: Public domain W3C validator