![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > difprsnss | Unicode version |
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
difprsnss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . 5 | |
2 | 1 | elpr 4047 | . . . 4 |
3 | elsn 4043 | . . . . 5 | |
4 | 3 | notbii 296 | . . . 4 |
5 | biorf 405 | . . . . 5 | |
6 | 5 | biimparc 487 | . . . 4 |
7 | 2, 4, 6 | syl2anb 479 | . . 3 |
8 | eldif 3485 | . . 3 | |
9 | elsn 4043 | . . 3 | |
10 | 7, 8, 9 | 3imtr4i 266 | . 2 |
11 | 10 | ssriv 3507 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
\ cdif 3472 C_ wss 3475 { csn 4029
{ cpr 4031 |
This theorem is referenced by: en2other2 8408 pmtrprfv 16478 itg11 22098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |