![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > difsnen | Unicode version |
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
Ref | Expression |
---|---|
difsnen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 4600 | . . . . . 6 | |
2 | enrefg 7567 | . . . . . 6 | |
3 | 1, 2 | syl 16 | . . . . 5 |
4 | 3 | 3ad2ant1 1017 | . . . 4 |
5 | sneq 4039 | . . . . . 6 | |
6 | 5 | difeq2d 3621 | . . . . 5 |
7 | 6 | breq2d 4464 | . . . 4 |
8 | 4, 7 | syl5ibcom 220 | . . 3 |
9 | 8 | imp 429 | . 2 |
10 | simpl1 999 | . . . . . 6 | |
11 | difexg 4600 | . . . . . 6 | |
12 | enrefg 7567 | . . . . . 6 | |
13 | 10, 1, 11, 12 | 4syl 21 | . . . . 5 |
14 | dif32 3760 | . . . . 5 | |
15 | 13, 14 | syl6breq 4491 | . . . 4 |
16 | simpl3 1001 | . . . . 5 | |
17 | simpl2 1000 | . . . . 5 | |
18 | en2sn 7615 | . . . . 5 | |
19 | 16, 17, 18 | syl2anc 661 | . . . 4 |
20 | incom 3690 | . . . . . 6 | |
21 | disjdif 3900 | . . . . . 6 | |
22 | 20, 21 | eqtri 2486 | . . . . 5 |
23 | 22 | a1i 11 | . . . 4 |
24 | incom 3690 | . . . . . 6 | |
25 | disjdif 3900 | . . . . . 6 | |
26 | 24, 25 | eqtri 2486 | . . . . 5 |
27 | 26 | a1i 11 | . . . 4 |
28 | unen 7618 | . . . 4 | |
29 | 15, 19, 23, 27, 28 | syl22anc 1229 | . . 3 |
30 | simpr 461 | . . . . . 6 | |
31 | 30 | necomd 2728 | . . . . 5 |
32 | eldifsn 4155 | . . . . 5 | |
33 | 16, 31, 32 | sylanbrc 664 | . . . 4 |
34 | difsnid 4176 | . . . 4 | |
35 | 33, 34 | syl 16 | . . 3 |
36 | eldifsn 4155 | . . . . 5 | |
37 | 17, 30, 36 | sylanbrc 664 | . . . 4 |
38 | difsnid 4176 | . . . 4 | |
39 | 37, 38 | syl 16 | . . 3 |
40 | 29, 35, 39 | 3brtr3d 4481 | . 2 |
41 | 9, 40 | pm2.61dane 2775 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
c0 3784 { csn 4029 class class class wbr 4452
cen 7533 |
This theorem is referenced by: domdifsn 7620 domunsncan 7637 enfixsn 7646 infdifsn 8094 cda1dif 8577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-1o 7149 df-er 7330 df-en 7537 |
Copyright terms: Public domain | W3C validator |