![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > difsnid | Unicode version |
Description: If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.) |
Ref | Expression |
---|---|
difsnid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3647 | . 2 | |
2 | snssi 4174 | . . 3 | |
3 | undif 3908 | . . 3 | |
4 | 2, 3 | sylib 196 | . 2 |
5 | 1, 4 | syl5eq 2510 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 \ cdif 3472 u. cun 3473
C_ wss 3475 { csn 4029 |
This theorem is referenced by: fnsnsplit 6108 fsnunf2 6110 difsnexi 6608 difsnen 7619 enfixsn 7646 phplem2 7717 pssnn 7758 dif1enOLD 7772 dif1en 7773 frfi 7785 xpfi 7811 dif1card 8409 hashfun 12495 mreexexlem4d 15044 symgextf1 16446 symgextfo 16447 symgfixf1 16462 gsumdifsnd 16987 gsummgp0 17256 islindf4 18873 scmatf1 19033 gsummatr01 19161 tdeglem4 22458 dfconngra1 24671 fsumnncl 31572 mgpsumunsn 32951 gsumdifsndf 32955 hdmap14lem4a 37601 hdmap14lem13 37610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 |
Copyright terms: Public domain | W3C validator |