![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > difxp | Unicode version |
Description: Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
difxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3630 | . . 3 | |
2 | relxp 5115 | . . 3 | |
3 | relss 5095 | . . 3 | |
4 | 1, 2, 3 | mp2 9 | . 2 |
5 | relxp 5115 | . . 3 | |
6 | relxp 5115 | . . 3 | |
7 | relun 5124 | . . 3 | |
8 | 5, 6, 7 | mpbir2an 920 | . 2 |
9 | ianor 488 | . . . . . 6 | |
10 | 9 | anbi2i 694 | . . . . 5 |
11 | andi 867 | . . . . 5 | |
12 | 10, 11 | bitri 249 | . . . 4 |
13 | opelxp 5034 | . . . . 5 | |
14 | opelxp 5034 | . . . . . 6 | |
15 | 14 | notbii 296 | . . . . 5 |
16 | 13, 15 | anbi12i 697 | . . . 4 |
17 | opelxp 5034 | . . . . . 6 | |
18 | eldif 3485 | . . . . . . . 8 | |
19 | 18 | anbi1i 695 | . . . . . . 7 |
20 | an32 798 | . . . . . . 7 | |
21 | 19, 20 | bitri 249 | . . . . . 6 |
22 | 17, 21 | bitri 249 | . . . . 5 |
23 | eldif 3485 | . . . . . . 7 | |
24 | 23 | anbi2i 694 | . . . . . 6 |
25 | opelxp 5034 | . . . . . 6 | |
26 | anass 649 | . . . . . 6 | |
27 | 24, 25, 26 | 3bitr4i 277 | . . . . 5 |
28 | 22, 27 | orbi12i 521 | . . . 4 |
29 | 12, 16, 28 | 3bitr4i 277 | . . 3 |
30 | eldif 3485 | . . 3 | |
31 | elun 3644 | . . 3 | |
32 | 29, 30, 31 | 3bitr4i 277 | . 2 |
33 | 4, 8, 32 | eqrelriiv 5102 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
\ cdif 3472 u. cun 3473 C_ wss 3475
<. cop 4035 X. cxp 5002 Rel wrel 5009 |
This theorem is referenced by: difxp1 5437 difxp2 5438 evlslem4OLD 18173 evlslem4 18174 txcld 20104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |