![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > digit1 | Unicode version |
Description: Two ways to express the th digit in the decimal expansion of a number (when base ). corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009.) |
Ref | Expression |
---|---|
digit1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | digit2 12299 | . . . . . . 7 | |
2 | 1 | 3coml 1203 | . . . . . 6 |
3 | 2 | 3expa 1196 | . . . . 5 |
4 | 3 | oveq1d 6311 | . . . 4 |
5 | nnre 10568 | . . . . . . . . 9 | |
6 | nnnn0 10827 | . . . . . . . . 9 | |
7 | reexpcl 12183 | . . . . . . . . 9 | |
8 | 5, 6, 7 | syl2an 477 | . . . . . . . 8 |
9 | remulcl 9598 | . . . . . . . 8 | |
10 | 8, 9 | sylan 471 | . . . . . . 7 |
11 | reflcl 11933 | . . . . . . 7 | |
12 | 10, 11 | syl 16 | . . . . . 6 |
13 | nnrp 11258 | . . . . . . 7 | |
14 | 13 | ad2antrr 725 | . . . . . 6 |
15 | 12, 14 | modcld 12002 | . . . . 5 |
16 | nnexpcl 12179 | . . . . . . . 8 | |
17 | 6, 16 | sylan2 474 | . . . . . . 7 |
18 | 17 | nnrpd 11284 | . . . . . 6 |
19 | 18 | adantr 465 | . . . . 5 |
20 | modge0 12005 | . . . . . 6 | |
21 | 12, 14, 20 | syl2anc 661 | . . . . 5 |
22 | 5 | ad2antrr 725 | . . . . . 6 |
23 | 8 | adantr 465 | . . . . . 6 |
24 | modlt 12006 | . . . . . . 7 | |
25 | 12, 14, 24 | syl2anc 661 | . . . . . 6 |
26 | nncn 10569 | . . . . . . . . . 10 | |
27 | exp1 12172 | . . . . . . . . . 10 | |
28 | 26, 27 | syl 16 | . . . . . . . . 9 |
29 | 28 | adantr 465 | . . . . . . . 8 |
30 | 5 | adantr 465 | . . . . . . . . 9 |
31 | nnge1 10587 | . . . . . . . . . 10 | |
32 | 31 | adantr 465 | . . . . . . . . 9 |
33 | simpr 461 | . . . . . . . . . 10 | |
34 | nnuz 11145 | . . . . . . . . . 10 | |
35 | 33, 34 | syl6eleq 2555 | . . . . . . . . 9 |
36 | leexp2a 12221 | . . . . . . . . 9 | |
37 | 30, 32, 35, 36 | syl3anc 1228 | . . . . . . . 8 |
38 | 29, 37 | eqbrtrrd 4474 | . . . . . . 7 |
39 | 38 | adantr 465 | . . . . . 6 |
40 | 15, 22, 23, 25, 39 | ltletrd 9763 | . . . . 5 |
41 | modid 12020 | . . . . 5 | |
42 | 15, 19, 21, 40, 41 | syl22anc 1229 | . . . 4 |
43 | simpll 753 | . . . . . . 7 | |
44 | nnm1nn0 10862 | . . . . . . . . 9 | |
45 | reexpcl 12183 | . . . . . . . . 9 | |
46 | 5, 44, 45 | syl2an 477 | . . . . . . . 8 |
47 | remulcl 9598 | . . . . . . . 8 | |
48 | 46, 47 | sylan 471 | . . . . . . 7 |
49 | nnexpcl 12179 | . . . . . . . . 9 | |
50 | 44, 49 | sylan2 474 | . . . . . . . 8 |
51 | 50 | adantr 465 | . . . . . . 7 |
52 | modmulnn 12013 | . . . . . . 7 | |
53 | 43, 48, 51, 52 | syl3anc 1228 | . . . . . 6 |
54 | expm1t 12194 | . . . . . . . . . 10 | |
55 | expcl 12184 | . . . . . . . . . . . 12 | |
56 | 44, 55 | sylan2 474 | . . . . . . . . . . 11 |
57 | simpl 457 | . . . . . . . . . . 11 | |
58 | 56, 57 | mulcomd 9638 | . . . . . . . . . 10 |
59 | 54, 58 | eqtrd 2498 | . . . . . . . . 9 |
60 | 26, 59 | sylan 471 | . . . . . . . 8 |
61 | 60 | adantr 465 | . . . . . . 7 |
62 | 61 | oveq2d 6312 | . . . . . 6 |
63 | 61 | oveq1d 6311 | . . . . . . . . 9 |
64 | 26 | ad2antrr 725 | . . . . . . . . . 10 |
65 | 26, 44, 55 | syl2an 477 | . . . . . . . . . . 11 |
66 | 65 | adantr 465 | . . . . . . . . . 10 |
67 | recn 9603 | . . . . . . . . . . 11 | |
68 | 67 | adantl 466 | . . . . . . . . . 10 |
69 | 64, 66, 68 | mulassd 9640 | . . . . . . . . 9 |
70 | 63, 69 | eqtrd 2498 | . . . . . . . 8 |
71 | 70 | fveq2d 5875 | . . . . . . 7 |
72 | 71, 61 | oveq12d 6314 | . . . . . 6 |
73 | 53, 62, 72 | 3brtr4d 4482 | . . . . 5 |
74 | reflcl 11933 | . . . . . . . 8 | |
75 | 48, 74 | syl 16 | . . . . . . 7 |
76 | remulcl 9598 | . . . . . . 7 | |
77 | 22, 75, 76 | syl2anc 661 | . . . . . 6 |
78 | modsubdir 12055 | . . . . . 6 | |
79 | 12, 77, 19, 78 | syl3anc 1228 | . . . . 5 |
80 | 73, 79 | mpbid 210 | . . . 4 |
81 | 4, 42, 80 | 3eqtr3d 2506 | . . 3 |
82 | 81 | 3impa 1191 | . 2 |
83 | 82 | 3comr 1204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
cmul 9518 clt 9649 cle 9650 cmin 9828 cn 10561 cn0 10820
cuz 11110
crp 11249
cfl 11927
cmo 11996 cexp 12166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |