![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > discr1 | Unicode version |
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
discr.1 | |
discr.2 | |
discr.3 | |
discr.4 | |
discr1.5 |
Ref | Expression |
---|---|
discr1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | discr1.5 | . . . . 5 | |
2 | discr.2 | . . . . . . . . . 10 | |
3 | 2 | adantr 465 | . . . . . . . . 9 |
4 | discr.3 | . . . . . . . . . . 11 | |
5 | 4 | adantr 465 | . . . . . . . . . 10 |
6 | 0re 9617 | . . . . . . . . . 10 | |
7 | ifcl 3983 | . . . . . . . . . 10 | |
8 | 5, 6, 7 | sylancl 662 | . . . . . . . . 9 |
9 | 3, 8 | readdcld 9644 | . . . . . . . 8 |
10 | peano2re 9774 | . . . . . . . 8 | |
11 | 9, 10 | syl 16 | . . . . . . 7 |
12 | discr.1 | . . . . . . . . 9 | |
13 | 12 | adantr 465 | . . . . . . . 8 |
14 | 13 | renegcld 10011 | . . . . . . 7 |
15 | 12 | lt0neg1d 10147 | . . . . . . . . 9 |
16 | 15 | biimpa 484 | . . . . . . . 8 |
17 | 16 | gt0ne0d 10142 | . . . . . . 7 |
18 | 11, 14, 17 | redivcld 10397 | . . . . . 6 |
19 | 1re 9616 | . . . . . 6 | |
20 | ifcl 3983 | . . . . . 6 | |
21 | 18, 19, 20 | sylancl 662 | . . . . 5 |
22 | 1, 21 | syl5eqel 2549 | . . . 4 |
23 | discr.4 | . . . . . 6 | |
24 | 23 | ralrimiva 2871 | . . . . 5 |
25 | 24 | adantr 465 | . . . 4 |
26 | oveq1 6303 | . . . . . . . . 9 | |
27 | 26 | oveq2d 6312 | . . . . . . . 8 |
28 | oveq2 6304 | . . . . . . . 8 | |
29 | 27, 28 | oveq12d 6314 | . . . . . . 7 |
30 | 29 | oveq1d 6311 | . . . . . 6 |
31 | 30 | breq2d 4464 | . . . . 5 |
32 | 31 | rspcv 3206 | . . . 4 |
33 | 22, 25, 32 | sylc 60 | . . 3 |
34 | resqcl 12235 | . . . . . . . . 9 | |
35 | 22, 34 | syl 16 | . . . . . . . 8 |
36 | 13, 35 | remulcld 9645 | . . . . . . 7 |
37 | 3, 22 | remulcld 9645 | . . . . . . 7 |
38 | 36, 37 | readdcld 9644 | . . . . . 6 |
39 | 38, 5 | readdcld 9644 | . . . . 5 |
40 | 13, 22 | remulcld 9645 | . . . . . . 7 |
41 | 40, 9 | readdcld 9644 | . . . . . 6 |
42 | 41, 22 | remulcld 9645 | . . . . 5 |
43 | 6 | a1i 11 | . . . . 5 |
44 | 8, 22 | remulcld 9645 | . . . . . . 7 |
45 | max2 11417 | . . . . . . . . 9 | |
46 | 6, 5, 45 | sylancr 663 | . . . . . . . 8 |
47 | max1 11415 | . . . . . . . . . 10 | |
48 | 6, 5, 47 | sylancr 663 | . . . . . . . . 9 |
49 | max1 11415 | . . . . . . . . . . 11 | |
50 | 19, 18, 49 | sylancr 663 | . . . . . . . . . 10 |
51 | 50, 1 | syl6breqr 4492 | . . . . . . . . 9 |
52 | 8, 22, 48, 51 | lemulge11d 10508 | . . . . . . . 8 |
53 | 5, 8, 44, 46, 52 | letrd 9760 | . . . . . . 7 |
54 | 5, 44, 38, 53 | leadd2dd 10192 | . . . . . 6 |
55 | 40, 3 | readdcld 9644 | . . . . . . . . 9 |
56 | 55 | recnd 9643 | . . . . . . . 8 |
57 | 8 | recnd 9643 | . . . . . . . 8 |
58 | 22 | recnd 9643 | . . . . . . . 8 |
59 | 56, 57, 58 | adddird 9642 | . . . . . . 7 |
60 | 40 | recnd 9643 | . . . . . . . . 9 |
61 | 3 | recnd 9643 | . . . . . . . . 9 |
62 | 60, 61, 57 | addassd 9639 | . . . . . . . 8 |
63 | 62 | oveq1d 6311 | . . . . . . 7 |
64 | 60, 61, 58 | adddird 9642 | . . . . . . . . 9 |
65 | 13 | recnd 9643 | . . . . . . . . . . . 12 |
66 | 65, 58, 58 | mulassd 9640 | . . . . . . . . . . 11 |
67 | sqval 12227 | . . . . . . . . . . . . 13 | |
68 | 58, 67 | syl 16 | . . . . . . . . . . . 12 |
69 | 68 | oveq2d 6312 | . . . . . . . . . . 11 |
70 | 66, 69 | eqtr4d 2501 | . . . . . . . . . 10 |
71 | 70 | oveq1d 6311 | . . . . . . . . 9 |
72 | 64, 71 | eqtrd 2498 | . . . . . . . 8 |
73 | 72 | oveq1d 6311 | . . . . . . 7 |
74 | 59, 63, 73 | 3eqtr3d 2506 | . . . . . 6 |
75 | 54, 74 | breqtrrd 4478 | . . . . 5 |
76 | 14, 22 | remulcld 9645 | . . . . . . . . . 10 |
77 | 9 | ltp1d 10501 | . . . . . . . . . 10 |
78 | max2 11417 | . . . . . . . . . . . . 13 | |
79 | 19, 18, 78 | sylancr 663 | . . . . . . . . . . . 12 |
80 | 79, 1 | syl6breqr 4492 | . . . . . . . . . . 11 |
81 | ledivmul 10443 | . . . . . . . . . . . 12 | |
82 | 11, 22, 14, 16, 81 | syl112anc 1232 | . . . . . . . . . . 11 |
83 | 80, 82 | mpbid 210 | . . . . . . . . . 10 |
84 | 9, 11, 76, 77, 83 | ltletrd 9763 | . . . . . . . . 9 |
85 | 65, 58 | mulneg1d 10034 | . . . . . . . . . 10 |
86 | df-neg 9831 | . . . . . . . . . 10 | |
87 | 85, 86 | syl6eq 2514 | . . . . . . . . 9 |
88 | 84, 87 | breqtrd 4476 | . . . . . . . 8 |
89 | 40, 9, 43 | ltaddsub2d 10178 | . . . . . . . 8 |
90 | 88, 89 | mpbird 232 | . . . . . . 7 |
91 | 19 | a1i 11 | . . . . . . . . 9 |
92 | 0lt1 10100 | . . . . . . . . . 10 | |
93 | 92 | a1i 11 | . . . . . . . . 9 |
94 | 43, 91, 22, 93, 51 | ltletrd 9763 | . . . . . . . 8 |
95 | ltmul1 10417 | . . . . . . . 8 | |
96 | 41, 43, 22, 94, 95 | syl112anc 1232 | . . . . . . 7 |
97 | 90, 96 | mpbid 210 | . . . . . 6 |
98 | 58 | mul02d 9799 | . . . . . 6 |
99 | 97, 98 | breqtrd 4476 | . . . . 5 |
100 | 39, 42, 43, 75, 99 | lelttrd 9761 | . . . 4 |
101 | ltnle 9685 | . . . . 5 | |
102 | 39, 6, 101 | sylancl 662 | . . . 4 |
103 | 100, 102 | mpbid 210 | . . 3 |
104 | 33, 103 | pm2.65da 576 | . 2 |
105 | lelttric 9712 | . . . 4 | |
106 | 6, 12, 105 | sylancr 663 | . . 3 |
107 | 106 | ord 377 | . 2 |
108 | 104, 107 | mt3d 125 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
if cif 3941 class class class wbr 4452
(class class class)co 6296 cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 clt 9649 cle 9650 cmin 9828 -u cneg 9829 cdiv 10231 2 c2 10610 cexp 12166 |
This theorem is referenced by: discr 12303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |