![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > disji2 | Unicode version |
Description: Property of a disjoint
collection: if ( ) = and
( ) = , and , then and are disjoint.
(Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disji.1 | |
disji.2 |
Ref | Expression |
---|---|
disji2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2654 | . . 3 | |
2 | disjors 4438 | . . . . . 6 | |
3 | eqeq1 2461 | . . . . . . . 8 | |
4 | nfcv 2619 | . . . . . . . . . . 11 | |
5 | nfcv 2619 | . . . . . . . . . . 11 | |
6 | disji.1 | . . . . . . . . . . 11 | |
7 | 4, 5, 6 | csbhypf 3453 | . . . . . . . . . 10 |
8 | 7 | ineq1d 3698 | . . . . . . . . 9 |
9 | 8 | eqeq1d 2459 | . . . . . . . 8 |
10 | 3, 9 | orbi12d 709 | . . . . . . 7 |
11 | eqeq2 2472 | . . . . . . . 8 | |
12 | nfcv 2619 | . . . . . . . . . . 11 | |
13 | nfcv 2619 | . . . . . . . . . . 11 | |
14 | disji.2 | . . . . . . . . . . 11 | |
15 | 12, 13, 14 | csbhypf 3453 | . . . . . . . . . 10 |
16 | 15 | ineq2d 3699 | . . . . . . . . 9 |
17 | 16 | eqeq1d 2459 | . . . . . . . 8 |
18 | 11, 17 | orbi12d 709 | . . . . . . 7 |
19 | 10, 18 | rspc2v 3219 | . . . . . 6 |
20 | 2, 19 | syl5bi 217 | . . . . 5 |
21 | 20 | impcom 430 | . . . 4 |
22 | 21 | ord 377 | . . 3 |
23 | 1, 22 | syl5bi 217 | . 2 |
24 | 23 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 [_ csb 3434 i^i cin 3474
c0 3784 Disj_ wdisj 4422 |
This theorem is referenced by: disji 4440 disjxiun 4449 voliunlem1 21960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-in 3482 df-nul 3785 df-disj 4423 |
Copyright terms: Public domain | W3C validator |