![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > disjmoOLD | Unicode version |
Description: Two ways to say that a
collection ( ) for is
disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.)
(New usage is discouraged.) (Proof modification is
discouraged.) |
Ref | Expression |
---|---|
disjmo.1 |
Ref | Expression |
---|---|
disjmoOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 4424 | . 2 | |
2 | disjmo.1 | . . 3 | |
3 | 2 | disjor 4436 | . 2 |
4 | 1, 3 | bitr3i 251 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 A. wal 1393
= wceq 1395 e. wcel 1818 E* wmo 2283
A. wral 2807 i^i cin 3474 c0 3784 Disj_ wdisj 4422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rmo 2815 df-v 3111 df-dif 3478 df-in 3482 df-nul 3785 df-disj 4423 |
Copyright terms: Public domain | W3C validator |