Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjmoOLD Unicode version

Theorem disjmoOLD 4437
 Description: Two ways to say that a collection ( ) for is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
disjmo.1
Assertion
Ref Expression
disjmoOLD
Distinct variable groups:   ,,,   ,,   ,,

Proof of Theorem disjmoOLD
StepHypRef Expression
1 dfdisj2 4424 . 2
2 disjmo.1 . . 3
32disjor 4436 . 2
41, 3bitr3i 251 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  \/wo 368  /\wa 369  A.wal 1393  =wceq 1395  e.wcel 1818  E*wmo 2283  A.wral 2807  i^icin 3474   c0 3784  Disj_wdisj 4422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rmo 2815  df-v 3111  df-dif 3478  df-in 3482  df-nul 3785  df-disj 4423
 Copyright terms: Public domain W3C validator