![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > disjpss | Unicode version |
Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
disjpss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3522 | . . . . . . . 8 | |
2 | 1 | biantru 505 | . . . . . . 7 |
3 | ssin 3719 | . . . . . . 7 | |
4 | 2, 3 | bitri 249 | . . . . . 6 |
5 | sseq2 3525 | . . . . . 6 | |
6 | 4, 5 | syl5bb 257 | . . . . 5 |
7 | ss0 3816 | . . . . 5 | |
8 | 6, 7 | syl6bi 228 | . . . 4 |
9 | 8 | necon3ad 2667 | . . 3 |
10 | 9 | imp 429 | . 2 |
11 | nsspssun 3730 | . . 3 | |
12 | uncom 3647 | . . . 4 | |
13 | 12 | psseq2i 3593 | . . 3 |
14 | 11, 13 | bitri 249 | . 2 |
15 | 10, 14 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 =/= wne 2652
u. cun 3473 i^i cin 3474 C_ wss 3475
C. wpss 3476 c0 3784 |
This theorem is referenced by: isfin1-3 8787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 |
Copyright terms: Public domain | W3C validator |