![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > disjssun | Unicode version |
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
disjssun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 3743 | . . . . 5 | |
2 | 1 | equncomi 3649 | . . . 4 |
3 | uneq2 3651 | . . . . 5 | |
4 | un0 3810 | . . . . 5 | |
5 | 3, 4 | syl6eq 2514 | . . . 4 |
6 | 2, 5 | syl5eq 2510 | . . 3 |
7 | 6 | eqeq1d 2459 | . 2 |
8 | df-ss 3489 | . 2 | |
9 | df-ss 3489 | . 2 | |
10 | 7, 8, 9 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 |
This theorem is referenced by: hashbclem 12501 alexsubALTlem2 20548 iccntr 21326 reconnlem1 21331 dvne0 22412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |