![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > disjxun | Unicode version |
Description: The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjxun.1 |
Ref | Expression |
---|---|
disjxun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjel 3873 | . . . . . . . . . . 11 | |
2 | eleq1 2529 | . . . . . . . . . . . 12 | |
3 | 2 | notbid 294 | . . . . . . . . . . 11 |
4 | 1, 3 | syl5ibcom 220 | . . . . . . . . . 10 |
5 | 4 | con2d 115 | . . . . . . . . 9 |
6 | 5 | impr 619 | . . . . . . . 8 |
7 | biorf 405 | . . . . . . . 8 | |
8 | 6, 7 | syl 16 | . . . . . . 7 |
9 | 8 | bicomd 201 | . . . . . 6 |
10 | 9 | 2ralbidva 2899 | . . . . 5 |
11 | 10 | anbi2d 703 | . . . 4 |
12 | ralunb 3684 | . . . . . 6 | |
13 | 12 | ralbii 2888 | . . . . 5 |
14 | nfv 1707 | . . . . . 6 | |
15 | nfcv 2619 | . . . . . . 7 | |
16 | nfv 1707 | . . . . . . . 8 | |
17 | nfcsb1v 3450 | . . . . . . . . . 10 | |
18 | nfcsb1v 3450 | . . . . . . . . . 10 | |
19 | 17, 18 | nfin 3704 | . . . . . . . . 9 |
20 | 19 | nfeq1 2634 | . . . . . . . 8 |
21 | 16, 20 | nfor 1935 | . . . . . . 7 |
22 | 15, 21 | nfral 2843 | . . . . . 6 |
23 | equequ2 1799 | . . . . . . . . 9 | |
24 | nfcv 2619 | . . . . . . . . . . . 12 | |
25 | nfcv 2619 | . . . . . . . . . . . 12 | |
26 | disjxun.1 | . . . . . . . . . . . 12 | |
27 | 24, 25, 26 | csbhypf 3453 | . . . . . . . . . . 11 |
28 | 27 | ineq2d 3699 | . . . . . . . . . 10 |
29 | 28 | eqeq1d 2459 | . . . . . . . . 9 |
30 | 23, 29 | orbi12d 709 | . . . . . . . 8 |
31 | 30 | cbvralv 3084 | . . . . . . 7 |
32 | equequ1 1798 | . . . . . . . . 9 | |
33 | csbeq1a 3443 | . . . . . . . . . . 11 | |
34 | 33 | ineq1d 3698 | . . . . . . . . . 10 |
35 | 34 | eqeq1d 2459 | . . . . . . . . 9 |
36 | 32, 35 | orbi12d 709 | . . . . . . . 8 |
37 | 36 | ralbidv 2896 | . . . . . . 7 |
38 | 31, 37 | syl5bbr 259 | . . . . . 6 |
39 | 14, 22, 38 | cbvral 3080 | . . . . 5 |
40 | r19.26 2984 | . . . . 5 | |
41 | 13, 39, 40 | 3bitr3i 275 | . . . 4 |
42 | 26 | disjor 4436 | . . . . 5 |
43 | 42 | anbi1i 695 | . . . 4 |
44 | 11, 41, 43 | 3bitr4g 288 | . . 3 |
45 | nfv 1707 | . . . . . . . . . 10 | |
46 | equequ2 1799 | . . . . . . . . . . 11 | |
47 | csbeq1a 3443 | . . . . . . . . . . . . 13 | |
48 | 47 | ineq2d 3699 | . . . . . . . . . . . 12 |
49 | 48 | eqeq1d 2459 | . . . . . . . . . . 11 |
50 | 46, 49 | orbi12d 709 | . . . . . . . . . 10 |
51 | 45, 21, 50 | cbvral 3080 | . . . . . . . . 9 |
52 | equequ1 1798 | . . . . . . . . . . . 12 | |
53 | equcom 1794 | . . . . . . . . . . . 12 | |
54 | 52, 53 | syl6bb 261 | . . . . . . . . . . 11 |
55 | 24, 25, 26 | csbhypf 3453 | . . . . . . . . . . . . . 14 |
56 | 55 | ineq1d 3698 | . . . . . . . . . . . . 13 |
57 | incom 3690 | . . . . . . . . . . . . 13 | |
58 | 56, 57 | syl6eq 2514 | . . . . . . . . . . . 12 |
59 | 58 | eqeq1d 2459 | . . . . . . . . . . 11 |
60 | 54, 59 | orbi12d 709 | . . . . . . . . . 10 |
61 | 60 | ralbidv 2896 | . . . . . . . . 9 |
62 | 51, 61 | syl5bbr 259 | . . . . . . . 8 |
63 | 62 | cbvralv 3084 | . . . . . . 7 |
64 | ralcom 3018 | . . . . . . 7 | |
65 | 63, 64 | bitri 249 | . . . . . 6 |
66 | 65, 10 | syl5bb 257 | . . . . 5 |
67 | 66 | anbi1d 704 | . . . 4 |
68 | ralunb 3684 | . . . . . 6 | |
69 | 68 | ralbii 2888 | . . . . 5 |
70 | r19.26 2984 | . . . . 5 | |
71 | 69, 70 | bitri 249 | . . . 4 |
72 | disjors 4438 | . . . . 5 | |
73 | 72 | anbi2ci 696 | . . . 4 |
74 | 67, 71, 73 | 3bitr4g 288 | . . 3 |
75 | 44, 74 | anbi12d 710 | . 2 |
76 | disjors 4438 | . . 3 | |
77 | ralunb 3684 | . . 3 | |
78 | 76, 77 | bitri 249 | . 2 |
79 | df-3an 975 | . . 3 | |
80 | anandir 829 | . . 3 | |
81 | 79, 80 | bitri 249 | . 2 |
82 | 75, 78, 81 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 [_ csb 3434 u. cun 3473
i^i cin 3474 c0 3784 Disj_ wdisj 4422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-nul 3785 df-disj 4423 |
Copyright terms: Public domain | W3C validator |