![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > distrlem4pr | Unicode version |
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
distrlem4pr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1000 | . . . . 5 | |
2 | simprlr 764 | . . . . 5 | |
3 | elprnq 9390 | . . . . 5 | |
4 | 1, 2, 3 | syl2anc 661 | . . . 4 |
5 | simp1 996 | . . . . 5 | |
6 | simprl 756 | . . . . 5 | |
7 | elprnq 9390 | . . . . 5 | |
8 | 5, 6, 7 | syl2an 477 | . . . 4 |
9 | simpl3 1001 | . . . . 5 | |
10 | simprrr 766 | . . . . 5 | |
11 | elprnq 9390 | . . . . 5 | |
12 | 9, 10, 11 | syl2anc 661 | . . . 4 |
13 | vex 3112 | . . . . . 6 | |
14 | vex 3112 | . . . . . 6 | |
15 | ltmnq 9371 | . . . . . 6 | |
16 | vex 3112 | . . . . . 6 | |
17 | mulcomnq 9352 | . . . . . 6 | |
18 | 13, 14, 15, 16, 17 | caovord2 6487 | . . . . 5 |
19 | mulclnq 9346 | . . . . . 6 | |
20 | ovex 6324 | . . . . . . 7 | |
21 | ovex 6324 | . . . . . . 7 | |
22 | ltanq 9370 | . . . . . . 7 | |
23 | ovex 6324 | . . . . . . 7 | |
24 | addcomnq 9350 | . . . . . . 7 | |
25 | 20, 21, 22, 23, 24 | caovord2 6487 | . . . . . 6 |
26 | 19, 25 | syl 16 | . . . . 5 |
27 | 18, 26 | sylan9bb 699 | . . . 4 |
28 | 4, 8, 12, 27 | syl12anc 1226 | . . 3 |
29 | simpl1 999 | . . . . 5 | |
30 | addclpr 9417 | . . . . . . 7 | |
31 | 30 | 3adant1 1014 | . . . . . 6 |
32 | 31 | adantr 465 | . . . . 5 |
33 | mulclpr 9419 | . . . . 5 | |
34 | 29, 32, 33 | syl2anc 661 | . . . 4 |
35 | distrnq 9360 | . . . . 5 | |
36 | simprrl 765 | . . . . . 6 | |
37 | df-plp 9382 | . . . . . . . . 9 | |
38 | addclnq 9344 | . . . . . . . . 9 | |
39 | 37, 38 | genpprecl 9400 | . . . . . . . 8 |
40 | 39 | imp 429 | . . . . . . 7 |
41 | 1, 9, 2, 10, 40 | syl22anc 1229 | . . . . . 6 |
42 | df-mp 9383 | . . . . . . . 8 | |
43 | mulclnq 9346 | . . . . . . . 8 | |
44 | 42, 43 | genpprecl 9400 | . . . . . . 7 |
45 | 44 | imp 429 | . . . . . 6 |
46 | 29, 32, 36, 41, 45 | syl22anc 1229 | . . . . 5 |
47 | 35, 46 | syl5eqelr 2550 | . . . 4 |
48 | prcdnq 9392 | . . . 4 | |
49 | 34, 47, 48 | syl2anc 661 | . . 3 |
50 | 28, 49 | sylbid 215 | . 2 |
51 | simpll 753 | . . . . 5 | |
52 | elprnq 9390 | . . . . 5 | |
53 | 5, 51, 52 | syl2an 477 | . . . 4 |
54 | vex 3112 | . . . . . 6 | |
55 | 14, 13, 15, 54, 17 | caovord2 6487 | . . . . 5 |
56 | mulclnq 9346 | . . . . . 6 | |
57 | ltanq 9370 | . . . . . 6 | |
58 | 56, 57 | syl 16 | . . . . 5 |
59 | 55, 58 | sylan9bbr 700 | . . . 4 |
60 | 53, 4, 12, 59 | syl21anc 1227 | . . 3 |
61 | distrnq 9360 | . . . . 5 | |
62 | simprll 763 | . . . . . 6 | |
63 | 42, 43 | genpprecl 9400 | . . . . . . 7 |
64 | 63 | imp 429 | . . . . . 6 |
65 | 29, 32, 62, 41, 64 | syl22anc 1229 | . . . . 5 |
66 | 61, 65 | syl5eqelr 2550 | . . . 4 |
67 | prcdnq 9392 | . . . 4 | |
68 | 34, 66, 67 | syl2anc 661 | . . 3 |
69 | 60, 68 | sylbid 215 | . 2 |
70 | ltsonq 9368 | . . . . 5 | |
71 | sotrieq 4832 | . . . . 5 | |
72 | 70, 71 | mpan 670 | . . . 4 |
73 | 53, 8, 72 | syl2anc 661 | . . 3 |
74 | oveq1 6303 | . . . . . . 7 | |
75 | 74 | oveq2d 6312 | . . . . . 6 |
76 | 61, 75 | syl5eq 2510 | . . . . 5 |
77 | 76 | eleq1d 2526 | . . . 4 |
78 | 65, 77 | syl5ibcom 220 | . . 3 |
79 | 73, 78 | sylbird 235 | . 2 |
80 | 50, 69, 79 | ecase3d 943 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 e. wcel 1818 class class class wbr 4452
Or wor 4804 (class class class)co 6296
cnq 9251
cplq 9254
cmq 9255
cltq 9257
cnp 9258
cpp 9260
cmp 9261 |
This theorem is referenced by: distrlem5pr 9426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-plp 9382 df-mp 9383 |
Copyright terms: Public domain | W3C validator |