![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > distrlem5pr | Unicode version |
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
distrlem5pr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulclpr 9419 | . . . . 5 | |
2 | 1 | 3adant3 1016 | . . . 4 |
3 | mulclpr 9419 | . . . . 5 | |
4 | 3 | 3adant2 1015 | . . . 4 |
5 | df-plp 9382 | . . . . 5 | |
6 | addclnq 9344 | . . . . 5 | |
7 | 5, 6 | genpelv 9399 | . . . 4 |
8 | 2, 4, 7 | syl2anc 661 | . . 3 |
9 | df-mp 9383 | . . . . . . . 8 | |
10 | mulclnq 9346 | . . . . . . . 8 | |
11 | 9, 10 | genpelv 9399 | . . . . . . 7 |
12 | 11 | 3adant2 1015 | . . . . . 6 |
13 | 12 | anbi2d 703 | . . . . 5 |
14 | df-mp 9383 | . . . . . . . . 9 | |
15 | 14, 10 | genpelv 9399 | . . . . . . . 8 |
16 | 15 | 3adant3 1016 | . . . . . . 7 |
17 | distrlem4pr 9425 | . . . . . . . . . . . . . . 15 | |
18 | oveq12 6305 | . . . . . . . . . . . . . . . . . 18 | |
19 | 18 | eqeq2d 2471 | . . . . . . . . . . . . . . . . 17 |
20 | eleq1 2529 | . . . . . . . . . . . . . . . . 17 | |
21 | 19, 20 | syl6bi 228 | . . . . . . . . . . . . . . . 16 |
22 | 21 | imp 429 | . . . . . . . . . . . . . . 15 |
23 | 17, 22 | syl5ibrcom 222 | . . . . . . . . . . . . . 14 |
24 | 23 | exp4b 607 | . . . . . . . . . . . . 13 |
25 | 24 | com3l 81 | . . . . . . . . . . . 12 |
26 | 25 | exp4b 607 | . . . . . . . . . . 11 |
27 | 26 | com23 78 | . . . . . . . . . 10 |
28 | 27 | rexlimivv 2954 | . . . . . . . . 9 |
29 | 28 | rexlimdvv 2955 | . . . . . . . 8 |
30 | 29 | com3r 79 | . . . . . . 7 |
31 | 16, 30 | sylbid 215 | . . . . . 6 |
32 | 31 | impd 431 | . . . . 5 |
33 | 13, 32 | sylbid 215 | . . . 4 |
34 | 33 | rexlimdvv 2955 | . . 3 |
35 | 8, 34 | sylbid 215 | . 2 |
36 | 35 | ssrdv 3509 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 E. wrex 2808 C_ wss 3475
(class class class)co 6296 cplq 9254
cmq 9255
cnp 9258
cpp 9260
cmp 9261 |
This theorem is referenced by: distrpr 9427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-plp 9382 df-mp 9383 |
Copyright terms: Public domain | W3C validator |