![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > divalglem6 | Unicode version |
Description: Lemma for divalg 14061. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem6.1 | |
divalglem6.2 | |
divalglem6.3 |
Ref | Expression |
---|---|
divalglem6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem6.3 | . . . 4 | |
2 | 1 | zrei 10895 | . . 3 |
3 | 0re 9617 | . . 3 | |
4 | 2, 3 | lttri2i 9719 | . 2 |
5 | divalglem6.2 | . . . . . . . . 9 | |
6 | 0z 10900 | . . . . . . . . . 10 | |
7 | divalglem6.1 | . . . . . . . . . . 11 | |
8 | 7 | nnzi 10913 | . . . . . . . . . 10 |
9 | elfzm11 11778 | . . . . . . . . . 10 | |
10 | 6, 8, 9 | mp2an 672 | . . . . . . . . 9 |
11 | 5, 10 | mpbi 208 | . . . . . . . 8 |
12 | 11 | simp3i 1007 | . . . . . . 7 |
13 | 11 | simp1i 1005 | . . . . . . . . 9 |
14 | 13 | zrei 10895 | . . . . . . . 8 |
15 | 7 | nnrei 10570 | . . . . . . . 8 |
16 | 2, 15 | remulcli 9631 | . . . . . . . 8 |
17 | 14, 15, 16 | ltadd1i 10132 | . . . . . . 7 |
18 | 12, 17 | mpbi 208 | . . . . . 6 |
19 | 2 | renegcli 9903 | . . . . . . . 8 |
20 | 7 | nnnn0i 10828 | . . . . . . . . . 10 |
21 | 20 | nn0ge0i 10848 | . . . . . . . . 9 |
22 | lemulge12 10430 | . . . . . . . . . 10 | |
23 | 22 | an4s 826 | . . . . . . . . 9 |
24 | 15, 21, 23 | mpanl12 682 | . . . . . . . 8 |
25 | 19, 24 | mpan 670 | . . . . . . 7 |
26 | lt0neg1 10083 | . . . . . . . . 9 | |
27 | 2, 26 | ax-mp 5 | . . . . . . . 8 |
28 | znegcl 10924 | . . . . . . . . . . 11 | |
29 | 1, 28 | ax-mp 5 | . . . . . . . . . 10 |
30 | zltp1le 10938 | . . . . . . . . . 10 | |
31 | 6, 29, 30 | mp2an 672 | . . . . . . . . 9 |
32 | 0p1e1 10672 | . . . . . . . . . 10 | |
33 | 32 | breq1i 4459 | . . . . . . . . 9 |
34 | 31, 33 | bitri 249 | . . . . . . . 8 |
35 | 27, 34 | bitri 249 | . . . . . . 7 |
36 | 2 | recni 9629 | . . . . . . . . . . . 12 |
37 | 15 | recni 9629 | . . . . . . . . . . . 12 |
38 | 36, 37 | mulneg1i 10027 | . . . . . . . . . . 11 |
39 | 38 | oveq2i 6307 | . . . . . . . . . 10 |
40 | 16 | recni 9629 | . . . . . . . . . . 11 |
41 | 37, 40 | subnegi 9921 | . . . . . . . . . 10 |
42 | 39, 41 | eqtri 2486 | . . . . . . . . 9 |
43 | 42 | breq1i 4459 | . . . . . . . 8 |
44 | 19, 15 | remulcli 9631 | . . . . . . . . 9 |
45 | suble0 10091 | . . . . . . . . 9 | |
46 | 15, 44, 45 | mp2an 672 | . . . . . . . 8 |
47 | 43, 46 | bitr3i 251 | . . . . . . 7 |
48 | 25, 35, 47 | 3imtr4i 266 | . . . . . 6 |
49 | 14, 16 | readdcli 9630 | . . . . . . 7 |
50 | 15, 16 | readdcli 9630 | . . . . . . 7 |
51 | 49, 50, 3 | ltletri 9733 | . . . . . 6 |
52 | 18, 48, 51 | sylancr 663 | . . . . 5 |
53 | 49, 3 | ltnlei 9726 | . . . . 5 |
54 | 52, 53 | sylib 196 | . . . 4 |
55 | elfzle1 11718 | . . . 4 | |
56 | 54, 55 | nsyl 121 | . . 3 |
57 | zltp1le 10938 | . . . . . . . . 9 | |
58 | 6, 1, 57 | mp2an 672 | . . . . . . . 8 |
59 | 32 | breq1i 4459 | . . . . . . . 8 |
60 | 58, 59 | bitri 249 | . . . . . . 7 |
61 | lemulge12 10430 | . . . . . . . . 9 | |
62 | 15, 2, 61 | mpanl12 682 | . . . . . . . 8 |
63 | 21, 62 | mpan 670 | . . . . . . 7 |
64 | 60, 63 | sylbi 195 | . . . . . 6 |
65 | 11 | simp2i 1006 | . . . . . . 7 |
66 | addge02 10088 | . . . . . . . 8 | |
67 | 16, 14, 66 | mp2an 672 | . . . . . . 7 |
68 | 65, 67 | mpbi 208 | . . . . . 6 |
69 | 15, 16, 49 | letri 9734 | . . . . . 6 |
70 | 64, 68, 69 | sylancl 662 | . . . . 5 |
71 | 15, 49 | lenlti 9725 | . . . . 5 |
72 | 70, 71 | sylib 196 | . . . 4 |
73 | elfzm11 11778 | . . . . . 6 | |
74 | 6, 8, 73 | mp2an 672 | . . . . 5 |
75 | 74 | simp3bi 1013 | . . . 4 |
76 | 72, 75 | nsyl 121 | . . 3 |
77 | 56, 76 | jaoi 379 | . 2 |
78 | 4, 77 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 e. wcel 1818 =/= wne 2652
class class class wbr 4452 (class class class)co 6296
cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 clt 9649 cle 9650 cmin 9828 -u cneg 9829 cn 10561 cz 10889 cfz 11701 |
This theorem is referenced by: divalglem7 14057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 |
Copyright terms: Public domain | W3C validator |