![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > divalgmod | Unicode version |
Description: The result of the operator satisfies the requirements for the remainder in the division algorithm for a positive divisor (compare divalg2 14063 and divalgb 14062). This demonstration theorem justifies the use of to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
divalgmod |
N
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 10893 | . . . . . . . 8 | |
2 | nnrp 11258 | . . . . . . . 8 | |
3 | modlt 12006 | . . . . . . . 8 | |
4 | 1, 2, 3 | syl2an 477 | . . . . . . 7 |
5 | nnre 10568 | . . . . . . . . . . 11 | |
6 | nnne0 10593 | . . . . . . . . . . 11 | |
7 | redivcl 10288 | . . . . . . . . . . 11 | |
8 | 1, 5, 6, 7 | syl3an 1270 | . . . . . . . . . 10 |
9 | 8 | 3anidm23 1287 | . . . . . . . . 9 |
10 | 9 | flcld 11935 | . . . . . . . 8 |
11 | nnz 10911 | . . . . . . . . 9 | |
12 | 11 | adantl 466 | . . . . . . . 8 |
13 | zmodcl 12015 | . . . . . . . . . 10 | |
14 | 13 | nn0zd 10992 | . . . . . . . . 9 |
15 | zsubcl 10931 | . . . . . . . . 9 | |
16 | 14, 15 | syldan 470 | . . . . . . . 8 |
17 | nncn 10569 | . . . . . . . . . . 11 | |
18 | 17 | adantl 466 | . . . . . . . . . 10 |
19 | 10 | zcnd 10995 | . . . . . . . . . 10 |
20 | 18, 19 | mulcomd 9638 | . . . . . . . . 9 |
21 | modval 11998 | . . . . . . . . . . 11 | |
22 | 1, 2, 21 | syl2an 477 | . . . . . . . . . 10 |
23 | zcn 10894 | . . . . . . . . . . . . 13 | |
24 | 23 | adantr 465 | . . . . . . . . . . . 12 |
25 | zmulcl 10937 | . . . . . . . . . . . . . . 15 | |
26 | 11, 10, 25 | syl2an 477 | . . . . . . . . . . . . . 14 |
27 | 26 | anabss7 821 | . . . . . . . . . . . . 13 |
28 | 27 | zcnd 10995 | . . . . . . . . . . . 12 |
29 | 13 | nn0cnd 10879 | . . . . . . . . . . . 12 |
30 | subsub23 9848 | . . . . . . . . . . . 12 | |
31 | 24, 28, 29, 30 | syl3anc 1228 | . . . . . . . . . . 11 |
32 | eqcom 2466 | . . . . . . . . . . 11 | |
33 | eqcom 2466 | . . . . . . . . . . 11 | |
34 | 31, 32, 33 | 3bitr3g 287 | . . . . . . . . . 10 |
35 | 22, 34 | mpbid 210 | . . . . . . . . 9 |
36 | 20, 35 | eqtr3d 2500 | . . . . . . . 8 |
37 | dvds0lem 13994 | . . . . . . . 8 | |
38 | 10, 12, 16, 36, 37 | syl31anc 1231 | . . . . . . 7 |
39 | divalg2 14063 | . . . . . . . 8 | |
40 | breq1 4455 | . . . . . . . . . 10 | |
41 | oveq2 6304 | . . . . . . . . . . 11 | |
42 | 41 | breq2d 4464 | . . . . . . . . . 10 |
43 | 40, 42 | anbi12d 710 | . . . . . . . . 9 |
44 | 43 | riota2 6280 | . . . . . . . 8 |
45 | 13, 39, 44 | syl2anc 661 | . . . . . . 7 |
46 | 4, 38, 45 | mpbi2and 921 | . . . . . 6 |
47 | 46 | eqcomd 2465 | . . . . 5 |
48 | 47 | sneqd 4041 | . . . 4 |
49 | snriota 6287 | . . . . 5 | |
50 | 39, 49 | syl 16 | . . . 4 |
51 | 48, 50 | eqtr4d 2501 | . . 3 |
52 | 51 | eleq2d 2527 | . 2 |
53 | elsn 4043 | . 2 | |
54 | breq1 4455 | . . . 4 | |
55 | oveq2 6304 | . . . . 5 | |
56 | 55 | breq2d 4464 | . . . 4 |
57 | 54, 56 | anbi12d 710 | . . 3 |
58 | 57 | elrab 3257 | . 2 |
59 | 52, 53, 58 | 3bitr3g 287 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 E! wreu 2809 { crab 2811
{ csn 4029 class class class wbr 4452
` cfv 5593 iota_ crio 6256 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 cmul 9518 clt 9649 cmin 9828 cdiv 10231 cn 10561 cn0 10820
cz 10889 crp 11249
cfl 11927
cmo 11996 cdvds 13986 |
This theorem is referenced by: divalgmodcl 30929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 |
Copyright terms: Public domain | W3C validator |