Colors of
variables: wff
setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 =/= wne 2652 (class class class)co 6296
cc 9511 0 cc0 9513 cmul 9518 cdiv 10231 |
This theorem is referenced by: zesq
12289 discr
12303 crre
12947 abs1m
13168 sqreulem
13192 o1rlimmul
13441 geoisum1c
13689 mertenslem1
13693 eftlub
13844 isprm5
14253 pcaddlem
14407 pockthlem
14423 mul4sqlem
14471 4sqlem17
14479 odadd1
16854 nmoleub3
21602 ipcau2
21677 pjthlem1
21852 dvrec
22358 plyeq0lem
22607 aareccl
22722 dvradcnv
22816 abelthlem7
22833 tangtx
22898 tanarg
23004 logcnlem4
23026 mcubic
23178 cubic2
23179 dquart
23184 quart1lem
23186 quart1
23187 tanatan
23250 atantan
23254 dvatan
23266 atantayl
23268 log2cnv
23275 basellem3
23356 perfectlem2
23505 bposlem1
23559 bposlem2
23560 lgsquad2lem1
23633 chebbnd1lem2
23655 selberg3lem1
23742 selberg4lem1
23745 selberg4
23746 selberg4r
23755 pntrlog2bndlem2
23763 pntrlog2bndlem3
23764 pntrlog2bndlem4
23765 pntrlog2bndlem5
23766 pntrlog2bndlem6
23768 pntibndlem2
23776 pntlemo
23792 ostth2lem3
23820 axeuclidlem
24265 pjhthlem1
26309 signsplypnf
28507 lgamgulmlem4
28574 subfaclim
28632 circum
29040 faclimlem1
29168 faclimlem3
29170 itg2addnclem
30066 dvasin
30103 areacirclem1
30107 pellexlem6
30770 reglogexp
30830 lcmgcdlem
31212 binomcxplemwb
31253 binomcxplemnotnn0
31261 0ellimcdiv
31655 stoweidlem1
31783 wallispilem4
31850 stirlinglem3
31858 stirlinglem4
31859 stirlinglem7
31862 dirkertrigeq
31883 dirkercncflem2
31886 fourierdlem30
31919 fourierdlem83
31972 elaa2lem
32016 etransclem23
32040 etransclem24
32041 etransclem44
32061 etransclem45
32062 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704
ax-6 1747 ax-7 1790 ax-8 1820
ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions:
df-bi 185 df-or 370
df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 |