![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dmfex | Unicode version |
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dmfex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5740 | . . 3 | |
2 | dmexg 6731 | . . . 4 | |
3 | eleq1 2529 | . . . 4 | |
4 | 2, 3 | syl5ib 219 | . . 3 |
5 | 1, 4 | syl 16 | . 2 |
6 | 5 | impcom 430 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
dom cdm 5004 --> wf 5589 |
This theorem is referenced by: wemoiso 6785 fopwdom 7645 fowdom 8018 wdomfil 8463 fin23lem17 8739 fin23lem32 8745 fin23lem39 8751 enfin1ai 8785 fin1a2lem7 8807 lindfmm 18862 kelac1 31009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-cnv 5012 df-dm 5014 df-rn 5015 df-fn 5596 df-f 5597 |
Copyright terms: Public domain | W3C validator |