![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dmmpt2ssx | Unicode version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
fmpt2x.1 |
Ref | Expression |
---|---|
dmmpt2ssx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . . . . 5 | |
2 | nfcsb1v 3450 | . . . . 5 | |
3 | nfcv 2619 | . . . . 5 | |
4 | nfcv 2619 | . . . . 5 | |
5 | nfcsb1v 3450 | . . . . 5 | |
6 | nfcv 2619 | . . . . . 6 | |
7 | nfcsb1v 3450 | . . . . . 6 | |
8 | 6, 7 | nfcsb 3452 | . . . . 5 |
9 | csbeq1a 3443 | . . . . 5 | |
10 | csbeq1a 3443 | . . . . . 6 | |
11 | csbeq1a 3443 | . . . . . 6 | |
12 | 10, 11 | sylan9eqr 2520 | . . . . 5 |
13 | 1, 2, 3, 4, 5, 8, 9, 12 | cbvmpt2x 6375 | . . . 4 |
14 | fmpt2x.1 | . . . 4 | |
15 | vex 3112 | . . . . . . . 8 | |
16 | vex 3112 | . . . . . . . 8 | |
17 | 15, 16 | op1std 6810 | . . . . . . 7 |
18 | 17 | csbeq1d 3441 | . . . . . 6 |
19 | 15, 16 | op2ndd 6811 | . . . . . . . 8 |
20 | 19 | csbeq1d 3441 | . . . . . . 7 |
21 | 20 | csbeq2dv 3835 | . . . . . 6 |
22 | 18, 21 | eqtrd 2498 | . . . . 5 |
23 | 22 | mpt2mptx 6393 | . . . 4 |
24 | 13, 14, 23 | 3eqtr4i 2496 | . . 3 |
25 | 24 | dmmptss 5508 | . 2 |
26 | nfcv 2619 | . . 3 | |
27 | nfcv 2619 | . . . 4 | |
28 | 27, 2 | nfxp 5031 | . . 3 |
29 | sneq 4039 | . . . 4 | |
30 | 29, 9 | xpeq12d 5029 | . . 3 |
31 | 26, 28, 30 | cbviun 4367 | . 2 |
32 | 25, 31 | sseqtr4i 3536 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 [_ csb 3434
C_ wss 3475 { csn 4029 <. cop 4035
U_ ciun 4330 e. cmpt 4510 X. cxp 5002
dom cdm 5004 ` cfv 5593 e. cmpt2 6298 c1st 6798
c2nd 6799 |
This theorem is referenced by: mpt2exxg 6874 mpt2xopn0yelv 6960 mpt2xopxnop0 6962 dmcoass 15393 ply1frcl 18355 dvbsss 22306 perfdvf 22307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fv 5601 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |