Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmprop Unicode version

Theorem dmprop 5433
 Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1
dmprop.1
Assertion
Ref Expression
dmprop

Proof of Theorem dmprop
StepHypRef Expression
1 dmsnop.1 . 2
2 dmprop.1 . 2
3 dmpropg 5431 . 2
41, 2, 3mp2an 672 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1370  e.wcel 1758   cvv 3081  {cpr 3995  <.cop 3999  domcdm 4957 This theorem is referenced by:  dmtpop  5434  funtp  5589  fpr  6014  fnprb  6061  fnprOLD  6062  hashfun  12357  ex-dm  24115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4530  ax-nul 4538  ax-pr 4648 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-rab 2809  df-v 3083  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3752  df-if 3906  df-sn 3994  df-pr 3996  df-op 4000  df-br 4410  df-dm 4967
 Copyright terms: Public domain W3C validator