MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrnssfld Unicode version

Theorem dmrnssfld 5266
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
dmrnssfld

Proof of Theorem dmrnssfld
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . . . 5
21eldm2 5206 . . . 4
31prid1 4138 . . . . . 6
4 vex 3112 . . . . . . . . . 10
51, 4uniop 4755 . . . . . . . . 9
61, 4uniopel 4756 . . . . . . . . 9
75, 6syl5eqelr 2550 . . . . . . . 8
8 elssuni 4279 . . . . . . . 8
97, 8syl 16 . . . . . . 7
109sseld 3502 . . . . . 6
113, 10mpi 17 . . . . 5
1211exlimiv 1722 . . . 4
132, 12sylbi 195 . . 3
1413ssriv 3507 . 2
154elrn2 5247 . . . 4
164prid2 4139 . . . . . 6
179sseld 3502 . . . . . 6
1816, 17mpi 17 . . . . 5
1918exlimiv 1722 . . . 4
2015, 19sylbi 195 . . 3
2120ssriv 3507 . 2
2214, 21unssi 3678 1
Colors of variables: wff setvar class
Syntax hints:  E.wex 1612  e.wcel 1818  u.cun 3473  C_wss 3475  {cpr 4031  <.cop 4035  U.cuni 4249  domcdm 5004  rancrn 5005
This theorem is referenced by:  relfld  5538  relcoi2  5540  dmexg  6731  rnexg  6732  wundm  9127  wunrn  9128  psdmrn  15837  dirdm  15864  dirge  15867  tailf  30193  filnetlem3  30198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-cnv 5012  df-dm 5014  df-rn 5015
  Copyright terms: Public domain W3C validator