![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dmrnssfld | Unicode version |
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
dmrnssfld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . 5 | |
2 | 1 | eldm2 5206 | . . . 4 |
3 | 1 | prid1 4138 | . . . . . 6 |
4 | vex 3112 | . . . . . . . . . 10 | |
5 | 1, 4 | uniop 4755 | . . . . . . . . 9 |
6 | 1, 4 | uniopel 4756 | . . . . . . . . 9 |
7 | 5, 6 | syl5eqelr 2550 | . . . . . . . 8 |
8 | elssuni 4279 | . . . . . . . 8 | |
9 | 7, 8 | syl 16 | . . . . . . 7 |
10 | 9 | sseld 3502 | . . . . . 6 |
11 | 3, 10 | mpi 17 | . . . . 5 |
12 | 11 | exlimiv 1722 | . . . 4 |
13 | 2, 12 | sylbi 195 | . . 3 |
14 | 13 | ssriv 3507 | . 2 |
15 | 4 | elrn2 5247 | . . . 4 |
16 | 4 | prid2 4139 | . . . . . 6 |
17 | 9 | sseld 3502 | . . . . . 6 |
18 | 16, 17 | mpi 17 | . . . . 5 |
19 | 18 | exlimiv 1722 | . . . 4 |
20 | 15, 19 | sylbi 195 | . . 3 |
21 | 20 | ssriv 3507 | . 2 |
22 | 14, 21 | unssi 3678 | 1 |
Colors of variables: wff setvar class |
Syntax hints: E. wex 1612 e. wcel 1818
u. cun 3473 C_ wss 3475 { cpr 4031
<. cop 4035 U. cuni 4249 dom cdm 5004
ran crn 5005 |
This theorem is referenced by: relfld 5538 relcoi2 5540 dmexg 6731 rnexg 6732 wundm 9127 wunrn 9128 psdmrn 15837 dirdm 15864 dirge 15867 tailf 30193 filnetlem3 30198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-cnv 5012 df-dm 5014 df-rn 5015 |
Copyright terms: Public domain | W3C validator |