![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dom2lem | Unicode version |
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
dom2d.1 | |
dom2d.2 |
Ref | Expression |
---|---|
dom2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2d.1 | . . . 4 | |
2 | 1 | ralrimiv 2869 | . . 3 |
3 | eqid 2457 | . . . 4 | |
4 | 3 | fmpt 6052 | . . 3 |
5 | 2, 4 | sylib 196 | . 2 |
6 | 1 | imp 429 | . . . . . . 7 |
7 | 3 | fvmpt2 5963 | . . . . . . . 8 |
8 | 7 | adantll 713 | . . . . . . 7 |
9 | 6, 8 | mpdan 668 | . . . . . 6 |
10 | 9 | adantrr 716 | . . . . 5 |
11 | nfv 1707 | . . . . . . . 8 | |
12 | nffvmpt1 5879 | . . . . . . . . 9 | |
13 | 12 | nfeq1 2634 | . . . . . . . 8 |
14 | 11, 13 | nfim 1920 | . . . . . . 7 |
15 | eleq1 2529 | . . . . . . . . . 10 | |
16 | 15 | anbi2d 703 | . . . . . . . . 9 |
17 | 16 | imbi1d 317 | . . . . . . . 8 |
18 | 15 | anbi1d 704 | . . . . . . . . . . . 12 |
19 | anidm 644 | . . . . . . . . . . . 12 | |
20 | 18, 19 | syl6bb 261 | . . . . . . . . . . 11 |
21 | 20 | anbi2d 703 | . . . . . . . . . 10 |
22 | fveq2 5871 | . . . . . . . . . . . . 13 | |
23 | 22 | adantr 465 | . . . . . . . . . . . 12 |
24 | dom2d.2 | . . . . . . . . . . . . . 14 | |
25 | 24 | imp 429 | . . . . . . . . . . . . 13 |
26 | 25 | biimparc 487 | . . . . . . . . . . . 12 |
27 | 23, 26 | eqeq12d 2479 | . . . . . . . . . . 11 |
28 | 27 | ex 434 | . . . . . . . . . 10 |
29 | 21, 28 | sylbird 235 | . . . . . . . . 9 |
30 | 29 | pm5.74d 247 | . . . . . . . 8 |
31 | 17, 30 | bitrd 253 | . . . . . . 7 |
32 | 14, 31, 9 | chvar 2013 | . . . . . 6 |
33 | 32 | adantrl 715 | . . . . 5 |
34 | 10, 33 | eqeq12d 2479 | . . . 4 |
35 | 25 | biimpd 207 | . . . 4 |
36 | 34, 35 | sylbid 215 | . . 3 |
37 | 36 | ralrimivva 2878 | . 2 |
38 | nfmpt1 4541 | . . 3 | |
39 | nfcv 2619 | . . 3 | |
40 | 38, 39 | dff13f 6167 | . 2 |
41 | 5, 37, 40 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 e. cmpt 4510 --> wf 5589
-1-1-> wf1 5590
` cfv 5593 |
This theorem is referenced by: dom2d 7576 dom3d 7577 ixpfi2 7838 infxpenc2lem1 8417 dfac12lem2 8545 4sqlem11 14473 odf1o1 16592 odf1o2 16593 dis2ndc 19961 hauspwpwf1 20488 itg1addlem4 22106 basellem3 23356 fsumvma 23488 dchrisum0fno1 23696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fv 5601 |
Copyright terms: Public domain | W3C validator |