![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > domssex | Unicode version |
Description: Weakening of domssex 7698 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
domssex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 7547 | . 2 | |
2 | reldom 7542 | . . 3 | |
3 | 2 | brrelex2i 5046 | . 2 |
4 | vex 3112 | . . . . . . . 8 | |
5 | f1stres 6822 | . . . . . . . . . 10 | |
6 | 5 | a1i 11 | . . . . . . . . 9 |
7 | difexg 4600 | . . . . . . . . . . 11 | |
8 | 7 | adantl 466 | . . . . . . . . . 10 |
9 | snex 4693 | . . . . . . . . . 10 | |
10 | xpexg 6602 | . . . . . . . . . 10 | |
11 | 8, 9, 10 | sylancl 662 | . . . . . . . . 9 |
12 | fex2 6755 | . . . . . . . . 9 | |
13 | 6, 11, 8, 12 | syl3anc 1228 | . . . . . . . 8 |
14 | unexg 6601 | . . . . . . . 8 | |
15 | 4, 13, 14 | sylancr 663 | . . . . . . 7 |
16 | cnvexg 6746 | . . . . . . 7 | |
17 | 15, 16 | syl 16 | . . . . . 6 |
18 | rnexg 6732 | . . . . . 6 | |
19 | 17, 18 | syl 16 | . . . . 5 |
20 | simpl 457 | . . . . . . . 8 | |
21 | f1dm 5790 | . . . . . . . . . 10 | |
22 | 4 | dmex 6733 | . . . . . . . . . 10 |
23 | 21, 22 | syl6eqelr 2554 | . . . . . . . . 9 |
24 | 23 | adantr 465 | . . . . . . . 8 |
25 | simpr 461 | . . . . . . . 8 | |
26 | eqid 2457 | . . . . . . . . 9 | |
27 | 26 | domss2 7696 | . . . . . . . 8 |
28 | 20, 24, 25, 27 | syl3anc 1228 | . . . . . . 7 |
29 | 28 | simp2d 1009 | . . . . . 6 |
30 | 28 | simp1d 1008 | . . . . . . 7 |
31 | f1oen3g 7551 | . . . . . . 7 | |
32 | 17, 30, 31 | syl2anc 661 | . . . . . 6 |
33 | 29, 32 | jca 532 | . . . . 5 |
34 | sseq2 3525 | . . . . . . 7 | |
35 | breq2 4456 | . . . . . . 7 | |
36 | 34, 35 | anbi12d 710 | . . . . . 6 |
37 | 36 | spcegv 3195 | . . . . 5 |
38 | 19, 33, 37 | sylc 60 | . . . 4 |
39 | 38 | ex 434 | . . 3 |
40 | 39 | exlimiv 1722 | . 2 |
41 | 1, 3, 40 | sylc 60 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
~P cpw 4012 { csn 4029 U. cuni 4249
class class class wbr 4452 cid 4795
X. cxp 5002 `' ccnv 5003 dom cdm 5004
ran crn 5005 |` cres 5006 o. ccom 5008
--> wf 5589 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 c1st 6798
cen 7533 cdom 7534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-1st 6800 df-2nd 6801 df-en 7537 df-dom 7538 |
Copyright terms: Public domain | W3C validator |