![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > domssex2 | Unicode version |
Description: A corollary of disjenex 7695. If is an injection from to then there is a right inverse of from to a superset of . (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
domssex2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5786 | . . . . 5 | |
2 | fex2 6755 | . . . . 5 | |
3 | 1, 2 | syl3an1 1261 | . . . 4 |
4 | f1stres 6822 | . . . . . 6 | |
5 | 4 | a1i 11 | . . . . 5 |
6 | difexg 4600 | . . . . . . 7 | |
7 | 6 | 3ad2ant3 1019 | . . . . . 6 |
8 | snex 4693 | . . . . . 6 | |
9 | xpexg 6602 | . . . . . 6 | |
10 | 7, 8, 9 | sylancl 662 | . . . . 5 |
11 | fex2 6755 | . . . . 5 | |
12 | 5, 10, 7, 11 | syl3anc 1228 | . . . 4 |
13 | unexg 6601 | . . . 4 | |
14 | 3, 12, 13 | syl2anc 661 | . . 3 |
15 | cnvexg 6746 | . . 3 | |
16 | 14, 15 | syl 16 | . 2 |
17 | eqid 2457 | . . . . . . 7 | |
18 | 17 | domss2 7696 | . . . . . 6 |
19 | 18 | simp1d 1008 | . . . . 5 |
20 | f1of1 5820 | . . . . 5 | |
21 | 19, 20 | syl 16 | . . . 4 |
22 | ssv 3523 | . . . 4 | |
23 | f1ss 5791 | . . . 4 | |
24 | 21, 22, 23 | sylancl 662 | . . 3 |
25 | 18 | simp3d 1010 | . . 3 |
26 | 24, 25 | jca 532 | . 2 |
27 | f1eq1 5781 | . . . 4 | |
28 | coeq1 5165 | . . . . 5 | |
29 | 28 | eqeq1d 2459 | . . . 4 |
30 | 27, 29 | anbi12d 710 | . . 3 |
31 | 30 | spcegv 3195 | . 2 |
32 | 16, 26, 31 | sylc 60 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
~P cpw 4012 { csn 4029 U. cuni 4249
cid 4795
X. cxp 5002 `' ccnv 5003 ran crn 5005
|` cres 5006 o. ccom 5008 --> wf 5589
-1-1-> wf1 5590
-1-1-onto-> wf1o 5592
c1st 6798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-1st 6800 df-2nd 6801 df-en 7537 |
Copyright terms: Public domain | W3C validator |