![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dral2 | Unicode version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) Allow a shortening of dral1 2067. (Revised by Wolf Lammen, 4-Mar-2018.) |
Ref | Expression |
---|---|
dral1.1 |
Ref | Expression |
---|---|
dral2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2056 | . 2 | |
2 | dral1.1 | . 2 | |
3 | 1, 2 | albid 1885 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 |
This theorem is referenced by: dral1ALT 2068 sbal1 2204 sbal2 2205 drnfc1 2638 drnfc2 2639 axpownd 8999 wl-sbalnae 30012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |