MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drex2 Unicode version

Theorem drex2 2070
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
dral1.1
Assertion
Ref Expression
drex2

Proof of Theorem drex2
StepHypRef Expression
1 hbae 2055 . 2
2 dral1.1 . 2
31, 2exbidh 1676 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  E.wex 1612
This theorem is referenced by:  dfid3  4801  dropab1  31356  dropab2  31357  e2ebind  33336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator