![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > drnf2 | Unicode version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 5-May-2018.) |
Ref | Expression |
---|---|
dral1.1 |
Ref | Expression |
---|---|
drnf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2056 | . 2 | |
2 | dral1.1 | . 2 | |
3 | 1, 2 | nfbidf 1887 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 F/ wnf 1616 |
This theorem is referenced by: nfsb4t 2130 drnfc2 2639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |