MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdemo2 Unicode version

Theorem dvdemo2 4688
Description: Demonstration of a theorem (scheme) that requires (meta)variables and to be distinct, but no others. It bundles the theorem schemes and . Compare dvdemo1 4687. (Contributed by NM, 1-Dec-2006.)
Assertion
Ref Expression
dvdemo2
Distinct variable group:   ,

Proof of Theorem dvdemo2
StepHypRef Expression
1 el 4634 . 2
2 ax-1 6 . 2
31, 2eximii 1658 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  E.wex 1612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-pow 4630
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator